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ABSTRACT 

Expressions are derived for the steady state vertical displacements 

produced at the surface of an elastic half-space by a line load of finite length, 

which moves with a constant velocity in a direction either parallel or perpendicular 

to its length. These expressions are used to estimate the response of structures 

to the seismic disturbances produced by a sonic boom which moves at speeds close 

to the speed of surface waves in the medium. Shock amplification factors for 

the accelerations imparted to the structure are obtained for a range of parameters. 

The results show that the accelerations produced at these speeds are generally 

quite small and that the resonance peak which occurs when the applied load moves 

with the surface wave speed is extremely narrow. 
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I INTRODUCTION. 

In anticipation of the development of supersonic transport planes, the 

question of potential shock effects in the ground due to sonic booms arises, 

i.e. shock effects on the foundations of surface structures or on shallow 

buried underground structures. The sonic boom produces a pressure wave over a 

crescent shaped area. The wave progresses along the ground with the speed V, 

of the plane and has an intended peak pressure of about two pounds per square 

foot. In general, shock effects from a pressure of this magnitude can be 

expected to be insignificant as confirmed by field observations. However, 

in both elastic solids [l] and in slightly dissipative solids [2], magnified 

shock phenomena are known to exist for certain specific velocities V'of the 

moving pressure wave, namely when VI= c p , cs Or CR y the velocities of the 

dilatational, equivoluminal and Rayleigh waves in the medium on whose surface 

the pressure is applied. For structures which are located at or near the 

surface of the medium, the intensity of such shock effects is necessarily most 

severe in the case where V,= cR , i.e. for Rayleigh waves where the energy is 

concentrated near the surface. For this reason the present report,which 

represents a preliminary study of sonic boom effects, considers the snrplification 

of shock effects on surface structures for the case of an elastic solid when the 

velocity V'of the traveling pressure wave is equal to, or close to, the velocity 

cR of Rayleigh waves in the medium. If such effects are of any practical sig- 

nificance, it is clear that they will be of particular importance in the medium 

where V'is approximately equal to cR and where dissipation is not large. The 

present investigation represents an attempt to study the possible importance of 

these shock effects and to indicate the desirability and direction of further 

experimental and/or theoretical studies. 



The analytical problem to be studied is the effect of a traveling crescent 

shaped pressure distribution at points at or near the surface of an elastic semi- 

infinite medium over which the wave moves. The most convenient starting point 

is a series of studies by Pekeris [jj, who obtained closed form solutions for 

the surface displacements produced by a stationary concentrated point force 

suddenly applied to the surface of an semi-infinite elastic medium. The 

problem of a crescent shaped pressure distribution could be formulated by 

suitable integrations in space and time of the Pekeris solution. However, the 

double integrations inherent in such an approach represent a large and time 

consuming computer effort, whereas the physical significance of the practical 

problem can be judged from the solution of a series of considerably simpler 

problems (from a computational viewpoint) involving moving line loads on the 

surface of the half-space. Two such types of problems have been considered: 

1) where the space distribution of the line load is parallel to the direction 

of propagation (Fig. lA) and 2) where the space distribution of the line load 

is perpendicular to the direction of propagation (Fig. I-B). For each of these 

cases, the steady state solution for the vertical displacement us was obtained 

for points on the surface in closed form and is presented in Appendix B. 

The transient response of an elastic medium to moving point loads was 

recently derived by Peyton [4] but, prior to the publication of this paper, 

the present authors obtained the solution for the steady state problem of a 

traveling point load which moves with constant velocity on the surface of an 

elastic half-space. These results, which are presented in Appendix A, were 

used to construct the traveling line load solutions in Appendix B. 

Once this solution has been obtained a convenient method for judging the 

likelihood of damage on structures by ground shock phenomena must be determined. 
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This paper uses the "shock factor" approach which permits the study of the 

expected ground shock amplification effect as a function of cbymeans of a 
% 

single number. Such results are extremely useful in obtaining qualitative 

judgments of practical importance, as shown in Section II of this report. 

Shock factors for the case of the moving line load with a space distribution 

psrallel to the direction of propagation have been evaluated for several cases 

of interest end have been used to draw conclusions on the physical importance 

of the sonic boom effects. 



II DISCUSSION OF RESULTS. 

In order to understand the response of points on the surface of the medium 

due to sonic booms as the velocity VI approaches cR , consider the line load 

treated as Case 1 of Appendix B. 

For a line load of length L = 26V' with a space distribution parsllel to its 

direction of propagation, Fig. (IA), the vertical displacement uz at points on 

the surface is given by the curves shown in Figs. (B-l) and (B-2) for sn 

illustrative case with Y = 26cs . 

Figure (B-l) shows results when V' 5 cR . It is seen that as V' approaches 

cR from below, a plateau of maximum displacement occurs over a distance whose 

width is of the order of the length of the traveling line load, 26V'. When V' 

equals cR , however, the displacements are infinite over the entire range 26V'. 

Figure (B-2) shows results for the range cR < V' < cs for the illustrative 

case where Y = 2bc 
s l 

It is noted that the nature of the response curves for 

the vertical displacements is quite different from that obtained for V' 5 cR . 

When cR < V' < cs , two infinite values of the displacement uz are obtained at 

the points 

cSt cSb cS -r+-+- 
Y -Y V' 

II- 

XC-1 
2 m-1) 

% 

for all values of V*. These infinities in the ciisplacement are a direct conse- 

quence of the fact that the traveling wave is "superseismic" with respect to 

Rsyleigh waves in the media. These infinities sre produced by a superposition 

of the infinite displacements which appear at t I y in the influence functions 

w(T) for the stationary concentrated load, as derived by Pekeris, [3]. It is 

of interest to observe that there is no continuity in the response curves for 
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V' < cR and V' > cR , Figs. (B-l)-(B-2), respectively. The point V' = cR is a 

discontinuous point in the character of the solution. 

The curves shown in Figs. (B-l)-(B-2) are typical displacements uz for 

points which do not lie on the path of the moving line load, i.e. for points 

where Y is not equal to zero. If Y is equal to zero, the displacements uz 

contain infinities for sll values of the velocity V' at the instants when the 

beginning or end points of the traveling load pass over the target point. 

If the line load is extended in the trasverse (Y) direction, so that the 

pressure is applied to a finite rectangular area, no substantial change in the 

displacement patterns shown in Fig. (B-l) would occur. In the displacement 

pattern of Fig. (B-2), however, the infinite peaks would vanish so that for 

V' f CR J the displacements due to the rectangular area loading would be finite 

everywhere, as one would expect from physical considerations. 

To illustrate this mathematically, we note that the response of the medium 

due to a loading applied over a moving rectangular area can be derived by an 

integration of the response u z , due to a moving load with a space distribution 

parallel to the direction of propagation of the load. For a rectangular area 

of width b-a and length L = 2bV’, the response % is given by 

where u z is given by Eqs. (10) and (11) of Appendix B. The quantity uz becomes 

infinite for the times t defined by EQ. (II-l), as shown in Fig. (B-2). However, 

upon substitution of uz into EQ. (II-2), it is seen that the contribution of 

the logarithmic terms in the second and fifth lines of Eq. (Xl.), Appendix B, 

which give rise to these infinities, cancel for the times t defined by Fq. (II-l), 

thus giving a finite result for the rectangular loading. 
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The response for the rectangular loading could slso be obtained by sn 

Integration of the response Us , due to a line load with a space distribution 

perpendicular to the direction of propagation of the load. For this case, a 

similar situation occurs with respect to cancellation of the infinities in Uz , 

Eq. (16), Appendix B, for V' > cR . However, the response still becomes infinite 

as V' approaches cR . 

It is crucial that the infinite vertical surface displacement found for the 

line load as V* approaches cR occurs also if the load is applied over a finite 

area. Consequently, the qualitative behavior of the elastic half-space to a 

sonic boom as VI approaches cR can be judged from the analysis for the traveling 

line load. It should also be mentioned that the authors consider it obvious that 

the horizontal displacements will, in principle, behave in a manner similar to the 

vertical displacements. Consequently, it was judged unnecessary to compute the 

horizontal displacements. The latter contsin elliptic integrals which lead to 

even more cumbersome integrations than in the csse of the vertical displacements 

in Appendix (A) and (B). 

It is important, however, to realize that infinite displacements are 

naturally a mathematical fiction, since the velocity V' of the boom cannot be 

steadily maintained at cR , end since dissipation till necessarily be present 

in real materials. Consequently, the infinite displacements which are predicted 

by the Idealized theoretical model will be reduced to finite, but possibly large 

values. Mreover, possible structural. damage due to sonic boom phenomena does 

not depend on the displacements of the medium, but rather on the accelerations 

which are produced by the boom. The effects of the accelerations on structures 

must therefore be considered. 

A convenient way to asesmthe potential shock damage is by mesns of shock 

amplification factors which express the accelerations to which a structure in 
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the path of the sonic boom would be subjected. To compute these factors, the 

displacement history u,(t) may be used directly in the following manner. 

Idealizing the structure as a simple oscillator, one can obtain the response 

of the oscillator of frequency W to a displacement history u,(t) of its support, 

without having to compute the accelerationsapplied to the support. Let a 

concentrated mass M on a linear spring of constant K be attached to a support 

which is subjected to a time dependent excitation, Fig. (2). Let u,(t) be the 

excitation of the support, and y(t) be the displacement of the mass M, both 

relative to a fixed datum. The equation of motion of the oscillator is 

SO that 

ry3i: = - K(y - uz) (II-3 > 

j; + w2y 2 
-0l-l 

Z 
(II-'+) 

where the frequency w of the oscillator is 

w= (II-51 

For homogeneous initial conditions, y(0) = f(O) = 0, the solution of Eq. (11-b) 

becomes t 

Y(t) = w 
s 

uz(T) sin W(t-7) dT . 
0 

(11-6) 

For a given frequency US, Eq. (11-6) gives the displacement history y(t) of the 

oscillator. The maximum displacement of the mass M relative to the moving 

support is given by 

I I Y -u 
zdmUm 

while the peak absolute acceleration of the mass M is 

w*y-u 
I I 

. ?ad.mum 

(II-71 

(11-S) 
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Shock spectra giving the maximum displacements and accelerations of the mass M 

as a function of the frequency u) may thus be computed. 

The shock amplification factor, relative to a selected reference, is then 

defined by the ratio 

Lw21y - u4ml 
F = rly - ‘4-] reference l 

m-9> 

To apply the shock factor concept to the present problem, one can study the 

magnification effects on the acceleration for typical values of the frequency 0, 

as the ratio 2 
CR 

Is varied [thus varying the excitation w*u, in Eq. (II-k)]. The 

magnification effects are of particular interest as v' approaches unity. For 
V' 33 

this study, a reference point, - = 0.75, 
CR % = 2, was selected somewhat arbitrarily. 

It is far enough removed from the range of the critical velocities 
( > 

vl 4 1 so that 
CR 

it might safely be assumed that the accelerations produced by a sonic boom travel- 

ing at a velocity V' = 0.75 CR are insignificant. 

Applying the shock factor concept, infinite exciting displacements us would 

produce infinite peak accelerations, since Eq. (11-8) conttins us . The infinity 

would occur at the instant when us becomes infinite, that is at some instant or 

instants during the excitation period of the oscillator. When V' - cR , us 

becomes indeed infinite and the shock factor will therefore be infinite. For 

V' < CR , Fig. (B-l) indicates no infinite values of us , so that the shock 

factors are everywhere finite. For V' > cR , Fig. (B-2) for the line load 

indicates that us contains two infinities which consequently produce infinite 

shock factors during the excitation period. However, it has previously been 

pointed out that these infinities would not occur if the traveling pressure were 

realistically distributed over a finite area, i.e. that these infinities are 

solely due to the oversimplified approach of using a line load. 
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A typicsl plot of the acceleration Ur*(y - us) versus time is given in 

Fig. (3) for 2 = 1.05, % 
CR 

= 2. It illustrates the infinite peaks in the 

neighborhood of t = 0 and shows that these spikes in the curve are extremely 

narrow. Recognizing that these spikes are only due to the replacement of the 

actual distributed load from a sonic boom by a line load, the maximum value of 

the acceleration elsewhere has been used in determining the shock factors which 

ere listed in Table I. 

Tables I(a)-(e) show the variation of the acceleration shock factor F ss a 

function of c 
CR 

for five values of the nondimensional parameter k end two values 

of . % The parameter k, defined by 

k=$ (11-10) 

relates T - % , the period of the structure, to 26 3: $- , the time constant 

of the moving line load. The ratio % relates Y = y c S' the perpendicular 

distance from the point at which the structure is located to the line of 

propagation of the moving line load, to L - 26V', the length of the line load. 

Figures (k-A)-(4-E) p resent plots of the shock factors given in Tables I(a)-(e), 

respectively. Each figure corresponds to one of the values of k = 2, 6, 20, 60, 

180 and shows F as a function of r for % = 2 and 6. 
CR 

The parsmeters used In 

the computations cover the important ranges inbullding periods, Mach numbers 

and length of aircraft. Reasonable periods for buildings range from T I 0.2 sec. 

to T = 6 sec. 

For a supersonic transport of length L = 300 ft at %ch 3, the follaring 

range for the values of k is obtained: 

V’ 2 3,ooo ft/scc. T= 6 sec. i k = 60 

L - 3ooit T = 2 sec. i k-20 

26 - 0.1 T - 0.2 ICC. ; k-2 
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For a supersonic plane of length L = 100 ft at Mach 3, the rsnge of values 

for k becomes 

V' Z 3,000 ft/sec. T = 6 sec. i k-180 

L -lOOft T = 2 8ec. ; k = 60 

26 = 0.3333 T - 0.2 sec. ; k= 6 

For a supersonic plane of length L zc 100 ft at Mach 1, the rsnge of values 

for k are the same as those for the L = 300 ft, Mach 3 case. 

It is seen that the increase in accelerations as c approaches unity is 
CR 

restricted to an extremely narrow range of one or two percent on either side of 

v' 
CR 

= 1. This situation corresponds to a resonance with an extremely narrow peak, 

so that the presence of even theslightest amount of d3.ssipation effectively 

eliminates the resonance for practical purposes. mreover, one must also remember 

that the plane which produces a sonic boom can hardly do better than to m&nt,ain 

a speed V' which varies by one percent. 

V' The largest values of the msgnification factors F for - = 1.01 are in 
CR 

general below ten and only for the extreme case k = 2 does the factor F reach forty. 

Available experimental information [5] has indicated that for V' # cR , sonic boom 

effects transmitted through the ground are extremely small. Magnifications of ten 

are therefore clearly of no consequence. In the case k = 2, the magnification is 

forty, but reference to the parameters for the L - 300 ft, M = 3 case shows that 

this corresponds to a period T = 0.2 sec., i.e. to very stiff buildings. In a 

stiff building, obviously a larger force cm be tolerated without harmful effects. 

10 



II 

III CONCLUDING REMARKS. 

It has been demonstrated in the paper that the potentially most serious 

situation occurs when the velocity of the plane is in close proximity to the 

speed of Rsyleigh waves in the ground. 

The paper lists msgnification factors F which sre functions of nondimensional 

parameters k and 5; . These amplification factors indicate the increase in all 

effects, (e.g. accelerations, stresses, etc.) when the velocity V' of the plane 

approaches the Rsyleigh wave speed in the ground compared with a reference effect 

when V' differs substantially from cR . It is known that this reference effect 

is extremely small; typical observations are given in [5]. 

The shock factors F were not computed for the crescent shaped signature of 

a sonic boom, but for a simplified loading assumption. These magnification 

factors may theoreticslly reach sn infinite value for a perfectly elastic material 

when V' is exactly equal to cR . The theoretical infinite values can not be 

*> reached in actuality because all real materials contain a damping mechanism and 

no plane can in practice msintsin exactly the critical velocity V' = cR for the 

medium. The situation is quite similar to the response of a complicated mechanical. 

oscillator subjected to a harmonic force when the frequency of the force coincides 

with one of the natural frequencies of the system. The practical importance of 

such a resonance depends on the narrowness of the spike in a diagram representing 

*> The assumption of perfectly elastic behavior violates the laws of thermo- 
dynamics, unless the thermal expansion coefficient of the material were to 
vanish. 
161, 

A "corrected" analysis, using the equations of "thermo-elasticity", 
contains a mechanism transferring minute portions of the mechanical 

energy into heat; i.e. there is slight damping. If the material should also 
be subject to viscous or plastic effects, the energy dissipation from these 
sources would be in addition to that from the thermal effects. The latter 
therefore gives the smallest damping effects for any real material. 

11 
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amplitude as a function of frequency. In the present results the spike at 

V' P cR is extremely narrow and the study therefore indicates that a rather 

delicate and very unlikely combination of circumstances would be required to 

produce significant responses. 

A more definite answer , giving an upper bound on the effects, could be 

obtained on the ‘basis of a thermo-elastic analysis. However, such an analysis 

would require a considerable effort in time and money. The writers are convinced 

that the resonance expressed by the infinite peak in the shock amplification 

factors, which exists for the ideal elastic model, csn not be expected to be of 

practical significance. In view of this, they do not recommend continuation of 

analytical work on sonic boom effects transmitted to structures by surface waves 

in the ground. 
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TABLE I - SHOCK FACTORS "F" 

F F F F F 

k=20 k-180 k - 60 

V' 
c R 

I!. 
CR 

I!. 
CR % 

-2 % =6 r; =2 % -6 % =2 % =6 

0.75 1.0 0.41 0.75 1.0 0.60 
0.85 1.15 0.58 0.85 1.05 0.69 
0.90 1.30 0.73 0.90 1.12 o-77 
0.95 1.63 1.06 0.95 1.30 O-97 
0.98 2.30 l-73 0.98 1.69 l-37 
0.99 3.05 2.47 0.99 2.14 1.82 
1.01 3.22 3.08 1.008 2.06 1.89 
1.03 1.83 1.78 1.028 1.l.l 1.05 
1.05 1.49 1.46 1.044 0.88 0.85 

1.07 1.30 1.27 1.064 0.79 0.78 

o-75 1.0 0.71 
0.85 1.0 0.74 
O-go 1.04 0.79 
0.95 1.15 0.92 

0.98 1.40 1.20 
0.99 1.70 1.51 
1.003 2.35 1.41 
1.024 0.83 0.79 
1.044 0.69 0.69 

(4 (b) 

% =6 % 
= 6 

o-75 1.0 0.17 
0.85 1.42 0.36 
0.90 1.84 0.58 
0.95 2.73 1.19 

0.98 4.52 2.66 

0.99 6.53 4.49 
1.01 8.26 a.09 
1.03 4.84 4.60 
1.05 3.87 3e55 
1.07 3.43 3.11 

o-75 1.0 0.05 
0.85 1.98 0.17 
0.90 3.14 0.38 
0.95 6.19 1.21 
0.98 13*3 4.29 
0.99 22.1 9.52 
1.01 41.5 30.2 
1.03 22.9 9.68 
1.05 17.4 6.53 
1-w 14.5 5.20 

(4 (d) 
14 
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APPENDIXA - Steady State Response at the Surface of an Elastic Half-Space Due 
to Moving Point Load with Constant Velocity. .- 

Consider a semi-infinite homogeneous and isotropic elastic half-space over 

which a concentrated point load moves with a velocity V'. The displacements at 

points on the surface of the medium can be evaluated by using the corresponding 

displacements due to a stationary point load as influence coefficients. The 

expressions for the displacements due to the moving load are evaluated by 

suitable integrations of the latter in time. This &lows the study of the change 

in magnitude of the displacements as V', the velocity of the point load is varied; 

of particular interest are the magnification effects as V' approaches cR , the 

velocity of Rayleigh waves in the medium. 

For practical purposes therefore, this study has been confined to an 

investigation of the vertical displacement W in the neighborhood of cR . 

Results are presented for two regions: a) V'<cRand b) cS>V’>cR. 

The surface displacements produced on the haJf-space by a stationary 

concentrated point load with a step distribution in time have been obtained 

*> by Pekeris [3] . Using the nomenclature of Fig. (A-l), the vertical dis- 

placement w at a point P, due to the stationary load applied at a time t' 

and a point PI is given by: 

W(T) - 0 1 

ICJ3 
04 

*I The Pekeris solution Is given for an elastic material In which the Lame 
constants sre equal, I.e. A = p and hence, Polsson~e ratio Y = t . 



where 

and 

c& - t') 
7= 

r=El:/m 

Z K.= _ - 
32 v~ P 

(le> 

(If) 

(lg) 

The constant Z (negative) as defined by Pekeris represents the strength 

of the applied point load. 

Consider now the steady state problem of a concentrated point load which 

moves along the surface of the medium with a constant velocity V'. For this 

steady state problem, the initial time of application of the load is defined 

as t = - Q) while t = 0 is defined as the time at which the moving load passes 

opposite the point P at which the vertical displacement W is to be computed. 

The problem is formulated in two steps. First the vertical displacement R(t) 

due to a moving line load with a step function distribution in time is written 

in terms of the Pekeris solution, Eq. (1): 

t 
R(t) = 

s 
w(7) iv . (2) 

-00 
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The desired solution W(t) for a moving point load is obtained by differentiating 

R(t) with respect to time: 

W(t) = +$$ = &~w(T) dt' (3) 

where 

7= 
cs(t - t' ) 

. r 

Care must be taken in differentiating the integral in Eq. (3), since the 

Pekeris displacement function W(T) is discontinuous at T = y , while the 

derivative g (7) is discontinuous when 7 = 
& 1, and y respectively. 

It is therefore necessary to separate the function R(t) into a sum of 

integrals, each of which is continuous and differentiable in the range of 

integration except at the point T = y . To accomplish this, it is convenient 

to make the change in variables 

so that 

R(t) = 1 
s 

cs 0 
W(T) d5 

where 

(4) 

(5) 

(6) 
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Considering the two cases of interest 

Case A: V' < cR ; V < $ 

Case B: CR < V' < cs ; +v<1 

the variation of 7 as a function of 5 must be studied. Figures (A-2)-(A-3) 

show curves of ~(5) for Cases A and B respectively. In each case, T goes to 

zero as 5 approaches zero, while T goes to + as 5 approaches 0~ . The range 

of integration in Eq. (5) limits 5 to positive values between 0 and 00 . 

The point 

(7) 

corresponding to the maximum value of T, is positive only for positive 

values of t, i.e. for times at which the surface pressure has reached and 

passed opposite the point at which the displacement is being observed. 

Hence, in Case A, T has no relative maximum for t < 0 but increases 

monotonically to $ . For t > 0, a relative maximum point exists and is 

greater than $ . In Case B, three separate regions in time must be considered. 

Again T increases monotonically to v 1. for t < 0. 

relative maximum is obtained between T = 1 and T = y while 
. 

the maximum value of 7 is greater than 7 = y . The lines 7 = +j , 7 = 1 and 

T = y divide the graphs into the four regions in which the function w(T) is 

defined. 

Figures (A-2)-(A-3) allow the separation of the function R(t) so that 

the differentiation in Eq. (3) can be performed. To write the integral R(t) 

for any specific.case, one follows the proper curve from 5 = 0 to 5 = 01 , 

choosing the correct form of W(T) from Eqs. (la)-(ld) as determined by the 

values of 7. The problems are considered separately for Cases A and B. 
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Case A: Vii 

From Fig. (A-2), it is noted that each of the lines T = T=laIld 

7 = y intersect the T(s) curve at one point only, both for t < 0 and t ) 0. 

Letting 5, , 5, and 5, be the values of 5 corresponding to T = landy 

respectively, R(t) is written in terms of the Pekeris displacements: 

5Y 
4K +- 
cS s 

51 

where 

13J3 f 5’ 

‘I/ y2r2- c2 

r= f ~~.- y2 + vqt-S)2' 

dc +g 
cS s 

; d5 

gY 

Differentiating Eq. (8) with respect to t and using the relations 

&- (y2r2- g2)- 4 = _ $. (y2r2- 5')- 4 + f(y2r2- C2)- 3/2 

g (s2- q2r2)- 8 = _ & (C2- q2r2)' 4 _ <(g<$r2)- 3/2 / 

(8) 

(9) 

(10) 

aR the function at becomes 
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I % 
bR 2K -=- 
at cs 

d-i-zz 
(y2r2- g2)l12 

(l - dS j -2 

J 5=5 Y 1 (11) 
The four integrals in Eq. (11) can be evaluated immediately. The fifth term 

is cancelled by the contributions from the upper limit 5 = 5 of the last 
Y 

two integrals. Hence, the non-zero terms arise from the evaluation of the 

integrals at the points f = 5, , sl respectively. Performing the indicated 

integrations, W(t) [Eq. (3)] becomes: 
I \ 

2 1 7+--- +J3 2-/3 Re2 R. 2 1 + Y Y 9 ";s c J3-J3+3 R 2 R-2 R 2 Y Y h II 
where 

(12) 

- 
Rm = (1 - CYs2) y2 + ?t2 (13) 

and V < $ . 

It is convenient to obtain results for the nondimensional function 
WtY 
v- 

ct 
K in terms of the nondimensional time G . For this purpose, Eqs. (12)-(13) 

are rewritten in the form 
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(12a) 

where 

(13a) 

Figure (A-4) shows results for a range of values of c . 
CR 

As V' approaches 

cR from below, the magnitude of the vertical displacement W(t) is amplified 

and approaches infinity when V' = cR . These results will be used as influence 

coefficients in Appendix B in evaluating the vertical displacements us produced 

at the surface of the medium by traveling line loads. 

Case B: i<V<l 

From Fig. (A-3), It is noted that each of the lines T = +,T=l 

and 7 = y intersect the ~(5) curve at the points 5, , 5, and sv respectively 

for t 5 $ {c. Hence: 



+4K 
cS 

Upon rearranging terms, it may be shown that Eq. (14) differs from Eq. (8) 

by the single term: 

i3R and hence, z is obtained by differentiating this term and adding it to 

Eq. (11). The displacement W(t) is given by: 

1 + 

(14) 

(15) 

(16) 

where Ro is given by Eq. (13). 

For those values of time for which t > Fig. (A-3) indicates 

that the line T = y intersects the T(5) curve at two points. Letting these 

points be 5, and 5' 
Y 

respectively, R(t) is written as: 
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51 
R(t) = s 

cS s 
%O 

4K 
5 

+--- 
cS s 

51 

6m-J3 -- 

I dg + 
(17) 

It may be shown that Eq. (17) differs from Eq. (8) by the single term 

(18) 

Since the non-zero contribution to the derivative of this term comes only 

from the upper limit 5 = CO , the expression for W for this case is identical 

with that given by Eq. (16). Hence, the vertical displacement W(t) is given 

by Eq. (16) f or +l values of t. 

Proceeding as in Case (A), the nondimensional function 
WtY 
--P K is plotted as a 

cSt function of y . Equation (16) is rewritten in the form 

w t)y r: 
-+- i 

2 +J3 
K 

R 
1 -+p-$1 +&-$+?$I + 

si2 
Y v 
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where 8a is given by Eq. (lja). Figure (A-5) shows results for two values 

of the ratio v' . 
CR 

It is seen that ip each case, infinite discontinuities 

occurs in the displacements. These results till be used as influence coefficients 

in Appendix B in evaluating the vertical displacements uz produced at the surface 

of the medium by traveling line loads. 
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APPERBMB - Response at the Surface of .an Elastic Half-Space Due to Line Ioads __ .-.. 
Moving with Const.ant~ Velocity - Steady State Problems. 

This Appendix presents the deri-vations of expressions for the vertical dis- 

placements produced at the surface of a semi-infinite elastic half-space by 

moving line loads with space distributions which are parallel or perpendicular, 

respectively, to the direction of propagation of the line loads. In each case, 

the solutions are obtained using the expressions for the vertical displacement W(t) 

which were derived in Appendix A for moving point loads. By means of a suitable 

integration in space, the corresponding displacements for the moving line loads 

are derived. 

1.' Mvinp; Line Ioad with-a -Space Distribution Parsllel to the Direction of 
c ation of the Load [Fi . IA . 

Consider a semi-infinite homogeneous and isotropic elastic half-space 

over which a line load of length 2V'6 moves with a constant velocity V'. The 

vertical displacement u z at points on the surface of the medium can be evaluated 

by using the corresponding displacement W(t) due to a moving point load as ob- 

tained in Appendix A. As explained in the main body of the report, it was decided 

that it is sufficient to confine this study to an investigation of the vertical 

surface displacement us when V' is in the neighborhood of cR . Results are 

presented for the two cases: A) VI < CR and B) cs > V1 > cR . 

Consider the steady state problem of a line load of length 2V'6 which 

moves along the surface of the medium with a constant velocity V'. As in 

the case of the moving point load, the initial time of application of the 
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load is defined as t = - = while t = 0 is defined as the time at which the 

center of the moving line load passes opposite the point P at which the 

vertical displacement us is to be computed. Referring to Fig. (IA), the 

displacement us is constructed by means of a space integration of W(V't,y). 

The displacement dus due to a differential element of the line load of length dx 

and unit intensity is given by the relation 

du&t) = W(V’t,Y) dx (1) 

where x = V't is the position of the differential element and W(V't,y) is 

given by Eq. (12) of Appendix (A) for V' < cR , and Eq. (16) of Appendix (A) 

for cR < V' < cs . The vertical displacement uz(y,8,t) due to a moving line 

load of length 2V'6 and unit intensity is obtained by integration of Eq. (1): 

-V' (t+6) t+6 

s 
W(V't,y) dx = $ W(V'7,y) dT . (2) 

V' (t-a) s 
t-b 

Case A: V' < cR , 

Substituting Eq. (12) of Appendix (A) into Eq. (2), the displacement 

ui(y,6,t) is obtained directly in closed form by integration: 

qY,w = i$y,t+b) - $Y,W (3) 

where, 
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;&Y,T) = j& 3h [(T +{m)(T +{=)I + 

+ (2 +J3)(55fy [ arctan [(yq ,;+ ,3 + arctan [(iiqi T ,]} + 
T2+ b2 , 

I 
2 2 ( ) a * 

l- m-a 
m2 G- + a2 

2 23 
l+ m-a 

( J m2 i-27 
;I 

(4) 



and 

a2 = l-V2 [ 1 $ y2 

J2 I [ 3 142 y2 
v2 

b2= l-j? y2 

[ 3 

m2 = L&E y2 

[ 3 3 

n2 = 
l-+2 [ 3 $ Y2. 

It should be noted that the coefficient 

goes to infinity as V approaches $ , thus producing sn infinite vertical 

surface displacement uJy,b,t). 

As an illustrative example, numerical results are shown for the case 

b =Sb -- -- 0.5 
Y y 

(5) 

(7) 

Figure (B-l) shows these results for a rsnge of values of z 
=R 

. These curves 

are discussed in Section II of the main body of the report. 

Case B: CR < V' c cs 

Substituting Eq. (16) of Appendix A into Eq. (2), the displacement 

=(y,b,t) is again obtained by integration. Since CR < V' < cs for this csse, 

the arguments of the srctangent terms in Rq. (4) become imaginary and must be 

modified using the relation 
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tdl ix =&In2 . L 1 
The expression for u-(y,b,t) is 

uz(y,4,t) - qy,t+w - qY,t-w 

where, 

(9) 

(10) 
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I -I , 

[(T'+i T2+ a2) (T +i T2+ b2)] + 

i 

k2- a2 l- - 
A2 dk? 

i- 
A2- a2 'l+ - 

t2 &F 

1 
-2 

2 2 n-a 

ii n2 

ll 2 2 

( 

l- m -a. 
m2 i-k? 

2 2 
1+ m -a 

Jr- m2 &? 

ii 

2 2' 
l- n-a 

n2 &A 
2 a2 1+ n- 

i- n2 & 

I 

1 

+ 

+ 



and a2, b 2, d2, m2 and n2 are given by Eqs. (5). 

uzy Results are given.sgain for the nondimensional function 4~ in terms of 
=St the nondimensional vsriable r . Figure (B-2) shows numerical results for the 

illustrative example, 

8 =I? 
y-7 =0.5 , v=t 

for two values of E 
=R 

in the range cR < V' < cs . 

These curves are discussed in Section II of the main body of the report. 

2. Moving Line Inad with a Space Distribution Perpendicular to the direction .- 
of Propagation of the Load [Fig. (B-3)1. 

Consider a semi-infinite homogeneous and isotropic elastic half-space over 

which a line load of length 2L moves with a constant velocity VI. The vertical 

displacement Uz at points on the surface of the medium is obtained by an in- 

tegration procedure which is analogous to that used for the parallel line load. 

Just as in the case of the point load, the initial time of application of 

the load is defined as t = - a while t = 0 is defined as the time at which the 

moving line load passes opposite the point P at which the vertical displacement 

Us is to be computed. F "erring to Fig. (B-3), the displacement Uz is constructed 

by means of a space integration of W(V't, Y-7). The displacement dUz due to a 

differential element of line load of length dT and unit intensity is 

dUz(V't, Y-q) - W(V't, Y-T)) dq 02) 
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where W(V't, Y-7) is given by Eq. (12) of Appendix (A) for Vf < cR , and 

Eq. (16) of Appendix (A) for cR < V' < cs . The vertical displacement 

Us(y,L,t) due to a moving line load of length 2L is then.obtained by in- 

tegration of Eq. (12), 

L 

UZ(Y,W = & 
s 

cS 
Y+L/cs 

W(V't, Y-T]) dlj = 2~ 
s 

W(V’t,C) d6 l (13) 
-L Y-L/es 

Case A: V' < cR , 

Substituting Eq. (12) of Appendix (A) into Sq. (13), the displacement 

Us(y,L,t) is obtained directly in closed form by integration: 

UZ(Y,W = cz (Y + $ , t) - cz (Y - $ , t) (14) 

where, 
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VZ(y,t)msy a 2+2&-L 

[( 
A2 m2 n2 1 

h(a+{m)tb(-$-$t-j)In(bt{~) t 

+ (2 - J3> 

05) 



and a2, b 2, A29 m2 and n2 are given by Eq. (8). 

Case B: CR < V' < cs ) ($<V<l) 

Substituting Eq. (16) of Appendix (A) into Eq. (13), the displacement 

UZ(y,L,t) is again obtained by integration. The result is identical with 

Eq. (15) except for an additional term 

to be included inside the brackets, [..I, of Eq. (15). 
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